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In this paper, the early development of turbulent vortex rings at two Reynolds
numbers is studied using two-dimensional and stereoscopic particle image velocimetry
(PIV). In the late 1980s, a similarity theory of turbulent vortex rings was proposed
and this theory was tested primarily using laser Doppler velocimetry (LDV). However,
because of limitations of the experimental technique, the tests were inconclusive and
important assumptions could not be checked. Because single-point measurements were
used, vortex ring structures could only be inferred using a complex signal analysis
technique. In this study, the PIV technique provides spatial measurements of the
full field of the cross-section of a ring from which a more rigorous investigation of
the similarity theory is possible. Because the region over which the similarity theory
appears to hold starts at about 2.5 orifice diameters downstream, this study focusses
on the early development region from this point to 8 diameters downstream. Finally,
Reynolds stresses and turbulence production contours are presented. The effects of
ring dispersion on the measurements is also studied and quantified.

1. Introduction
A vortex ring in laboratory study is usually generated by the impulsive ejection of

fluid through a nozzle or an orifice into a quiescent environment. The inner boundary
layer of the nozzle or the orifice is ejected and rolls up to form a toroidal structure,
which is known as a vortex ring. The velocity and the stroke length of the piston
motion determine the circulation of the vortex ring and may be used to define a
Reynolds number which partly characterizes the nature of the ring (Lim & Nickels
1995).

Re =
Γ0

ν
=

UpL

2ν
, (1.1)

where Up is the velocity of the piston downstroke and L is the piston stroke
length. When this Reynolds number is sufficiently high (or the stroke length is
sufficiently long), the nature of the ring is observed to be unsteady, complex and
three-dimensional: these rings are referred to as turbulent vortex rings. Note that
Glezer (1988) has mapped out the conditions under which vortex rings will be
laminar, laminar becoming turbulent later, and turbulent from the outset.

Detailed quantitative data at various downstream locations from the nozzle exit
for various stages of rings’ development history have been given by many researchers
but mostly for laminar or relatively low-Reynolds-number cases, among which are
Maxworthy (1977) and Didden (1979). There have been relatively few studies of
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turbulent vortex rings, such as Maxworthy (1974), Johnson (1971) and Sallet &
Widmayer (1974). The most comprehensive study of turbulent vortex ring structure,
however, is given by Glezer & Coles (1990), in which a long-term similarity solution
was proposed based on the assumption of the invariance of the impulse and
experiments were made to examine the ring’s structure and turbulence statistics.

LDV was used in this study, which only provided instantaneous velocity information
at a single point in flow field. This limitation is important since spatial structure must
be inferred from temporal information. This is why Glezer & Coles (1990) developed
a profound signature recognition scheme to filter out imperfect or suspicious data
points and applied time-axis shifting before applying conventional statistical methods
to obtain ensemble-averaged structures. A similarity theory based on the invariance
of the hydrodynamic impulse was then proposed which, together with the use of
Taylor’s hypothesis, allowed the researchers to calculate turbulence statistics for a
turbulent vortex ring. The similarity theory is based on the dimensional analysis and
it was shown that turbulent vortex rings follow similar development from as early
as 2.5 nozzle (orifice) diameters downstream from the exit. This study, while careful
and comprehensive, suffered from a number of limitations (that were recognized and
noted by the authors) which includes:

(i) Spatial structure is inferred using Taylor’s hypothesis from single-point
measurements.

(ii) Only two components of the velocity were measured for the ring.
(iii) Ring dispersion was significant and difficult to correct for when relying on

point measurements. (The term dispersion is not clearly defined by Glezer & Coles
(1990). It is a general term to indicate the location difference of the ring cores from
one instantaneous realization to another. In this paper, this term refers to the distance
from the instantaneous ring core locations from that of the ensemble-averaged ring.)

(iv) The invariance of the impulse was assumed but could not be checked.
In this report, two-dimensional and stereoscopic PIV techniques are used to capture

the spatial structure of turbulent vortex rings for their early lives (first 8 diameters)
and some of the limitations described above are overcome.

2. Experimental methodology
2.1. Apparatus

This experiment is conducted in a tank of water of dimensions 750 × 750 × 1500 mm
in the Cambridge University Engineering Department. Vortex rings are generated by
an impulsive vertical movement of a piston mounted on the top of the tank. The
�144 mm diameter piston is driven by a stepper motor (SmartDrive Ltd.), which is
controlled by a programmable controller (Taranis). The velocity profile of the piston
movement is controlled by programming in BASIC language and the piston can move
up to 1000 mm s−1 with an acceleration and deceleration of about 1500 mm s−2. The
diameter of the piston/nozzle system was designed previously for large ring studies. In
order to study the longer distance/time range of rings while maintaining reasonable
spatial resolution, a small orifice of �50 mm is cut in the centre of a horizontal
plate, mounted over the cylinder exit, and two cameras are lined-up vertically to
cover a large field of view (FOV) with a common overlapped FOV of about 1D.
Experiments are carried out for two Reynolds numbers (different by a factor of two)
in order to investigate the possible dependence of structural differences on Reynolds
number. The Re for the vortex rings is calculated by converting the piston speed and
the stroke length to those effectively for smaller orifice. For the first condition, the
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Figure 1. Schematic diagram of the testing section in the centre section of the tank (piston
and motor not shown) and the centre section of the horizontal plate. The diagram is not in
scale.

effective Re1 is set to 41 280 in order to match the one of Glezer & Coles (1990) and
since the starting point of the similarity theory (which is about 2.5D downstream of
the nozzle exit, Glezer & Coles 1990) is of interest, y/D is limited to 8 (where y is
the downstream distance measured from the orifice exit); for the second condition,
the FOV is increased to about 10D and the effective Re2 is set to 20 039. In both
cases, y is limited to the top half of the tank to eliminate the boundary effect from
the tank bottom. The experimental set-up is summarized schematically in figure 1.
The PIV system was provided by LaVision and uses two Photron APX cameras. The
cameras are capable of running at a frame rate of 500 Hz with 4 s recording time
which provides a fairly good temporal resolution and duration. The cross-correlation
interrogation window size and overlap size are set to 16 × 16 pixels and 25 % to give
a spatial resolution of 2.48 mm for the Re1 case and 3.15 mm for the Re2 case. Note
that this resolution in comparison with the ring diameter is similar to that of Glezer &
Coles (1990) using LDV. There are 85×85 data points in one camera’s resultant vector
mesh. The effective L/D ratio for the small orifice for both cases is 3.43. For each
case, 50 realizations are produced to obtain reasonable statistical convergence; see
figure 3. The quantity computed in figure 3 is effectively the convergence speed of the
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Figure 2. (a) Flow visualization of ring’s centre cross-section, using a denoized image of
extremely high particle density at Re =20 039; (b) the corresponding vorticity field. Contour
levels are −110.0(5.0)−5.0 and 5.0(5.0)110.0 s−1.

turbulent stresses:

τN =
1

N

N∑
i=1

[
(ui − uN )2 + (vi − vN )2

]
, (2.1)

where uN =(1/N)
∑N

i=1 ui , vN = (1/N)
∑N

i=1 vi and u, v are the radial and axial velocity
component, respectively, as defined in figure 1. The convergence testing points for
both Re cases are put in the core centre region, where the maximum turbulent stress
intensities occur (see figures 16 and 17); therefore, stresses converge most slowly.
Although the transition map of Glezer (1988) indicates that at the condition of
Re ∼= 20 000 combined with L/D ∼= 3.5, the rings are in transition zone from laminar
to turbulent, figure 2 suggests that the rings are already quite turbulent.

2.2. Theoretical background

In this section, we follow closely the analysis of Glezer & Coles (1990), though note
the difference in the coordinates. On the basis of the dimensional analysis given by
Glezer & Coles (1990), the streamfunction of a vortex ring can be fully described by
its hydrodynamic impulse I , the density of the fluid ρ and the kinematic viscosity ν:

ψ = f (I, ρ, ν) = g (y, r, t) , (2.2)

where y and r are in cylindrical coordinates, r is the axis in the radius direction from
the axis of symmetry, y is the axis in the streamwise direction from the orifice exit,
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Figure 3. Convergence testing for the number of realizations needed for each Re case. The
term τN is defined in (2.1); τc = τ50. The testing point’s position is about 0.1D outside the left
core centroid (quite in the core centre region) for both Re cases where the rings are at 5.5D
downstream from the exit. Symbols: �, Re1 = 41 280 case; �, Re2 = 20 039 case. Lines: −−,
±10 %; − · −, ±5 %.

t is the time from the beginning of the piston movement. In Cartesian coordinates,
r is equivalent to (x − xo), where xo is the centre of the flow field, the mean ring
centre trajectory. The coordinate system adopted in this study is defined in figure 1.
Hydrodynamic impulse hence can be written as

I =
1

2
ρ

∫
V

(r × ω) dV, (2.3)

where ω is the vorticity and V is the entire fluid volume.
If the Reynolds number is sufficiently high and the flow is highly turbulent, the

dependence of the stream function on the kinematic viscosity can be neglected,
leaving only the other two quantities to govern the flow equation. Before the energy
of the vortex ring dies out significantly, the ring is still considered highly excited and
turbulent. Mathematically, when the circulation Γ has not decayed significantly, the
ratio Γ/ν is still large and the effect of the kinematic viscosity is still considered
negligible, ν can be dropped from (2.2). This is also one of the reasons why this
experiment is limited to the early development of turbulent vortex rings: at large
times viscous decay and cross-annihilation of vorticity will become important. While
the similarity transformation does not strictly require the invariance of the impulse
(the local value could be used from a dimensional perspective), it is this assumption
that leads to specific predictions for the variation of the other quantities of interest.
As a result, it is difficult to directly test for similarity without making this assumption.
Maxworthy (1974) observed that the vortical structure is continuously shed from the
main ring to the wake and concluded that the similarity transformation of the ring
is not possible. Glezer & Coles (1990), however, argued that if the hydrodynamic
impulse is considered as the total mechanical impulse of the non-conservative body
force required to generate the velocity field from zero, and if the entire unbounded
flow field is considered instead of just the main ring itself, this quantity should be
considered as invariant. It will be shown in § 3.1 that, even though the entire flow
field is being considered, the hydrodynamic impulse I is not quite constant. In fact,
a later study showed that the hydrodynamic impulse is not equivalent to mechanical
impulse, and this point will also be further commented on in § 3.1. If the invariance
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of the hydrodynamic impulse I is accepted, (2.2) can be rewritten as

ψt1/4
(ρ

I

)3/4

= f2

(
y

( ρ

I t

)1/4

, r
( ρ

I t

)1/4
)

. (2.4)

With a proper pair of spatial and temporal virtual origins defined (yo, to), (2.4) can
be written as

S = ψ (t − to)
1/4

(ρ

I

)3/4

= S (ξ, η) , (2.5)

where S is the dimensionless streamfunction, ξ , η are the dimensionless quantities for
the axial and radial coordinates y and r , respectively:

ξ = (y − yo)

(
ρ

I (t − to)

)1/4

, η = r

(
ρ

I (t − to)

)1/4

(2.6)

and

U = u
(ρ

I

)1/4

(t − to)
3/4 , V = v

(ρ

I

)1/4

(t − to)
3/4 , (2.7)

where u, v are the radial and axial velocity component, respectively, as defined in
figure 1; U , V are the corresponding dimensionless quantities.

Hence, the following set of rules must be satisfied if the rings obey the similarity
property (and the impulse is invariant):

(a) r � (y − yo).
(b) (y − yo)

4 � (t − to).
(c) v−1/3 � (t − to)

−1/2 � (y − yo).

3. Results and discussion
3.1. The similarity property

The simplest test of similarity is to consider the variation of the ring radius as a
function of streamwise distance. This is shown in figure 4. The ring size is determined
by locating the centroids of both cores and each core is defined by the area which is
enclosed by a closed contour of 40 % of the peak vorticity. Note that at L/D ∼= 3.5,
formation wake phenomena appear (Gharib, Rambod & Sharrif 1998) and because
of the highly turbulent nature of the rings, vorticity is continuously shed from the
ring bubble area. There are two points worth emphasizing here:

(a) Gharib et al. (1998) indicated that the formation wake starts to be visible at
about L/D ∼= 4(3.6 − 4.5), nevertheless in this experiment, at L/D = 3.43, significant
formation wake is already observed. Two reasons may be responsible for the shorter
formation time: firstly, more energetic or stronger vortices can advance the formation
time more rapidly (Dabiri 2009); secondly, a different ring generator configuration is
used in this experiment.

(b) The detailed vorticity shedding manner deserves a further study, Weigand &
Gharib (1994) observed a stepwise shedding in a much lower Re ring and for a
relatively long time duration. A preliminary study of vorticity shedding in individual
Re = 20 039 rings indicates a different manner from stepwise shedding during their
early lives. It is possible that up to the end of the testing time, stepwise shedding has
not started yet.
To minimize the error in determining the centroids, the wake is excluded when
determining the core area. It is worth noting that individual realizations are also very
important in the study of turbulent vortex rings, because the inevitable dispersion
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Figure 4. Ring radius r as a function of downstream distance y for both Reynolds numbers.
The grey lines are the traces of each of the 50 realizations; × denotes the ensemble-averaged
radius based on location; + denotes the ensemble-averaged radius based on arrival time;
−denotes the first-order least square fit of × starting from y/D = 3.5.

in core position and geometry tends to smear out actual behaviour. It is for this
reason that each of the 50 individual realizations is plotted (grey lines). Moreover,
because the y axis is the downstream position, it is more sensible to ensemble average
quantities based on location. The entire FOV is divided into a number of stations
along the streamwise direction starting from the orifice exit. The distance between
neighbouring stations is 0.05D. All the 50 realizations are ensemble averaged when
the apparent centre of the ring (judged from the locations of the two core centroids)
reaches each station, regardless of the arrival time (the difference is quite small, which
will be indicated later). As can be seen, compared with the result of averaging based
on arrival time, this fits the individual trace zone (grey zone) better especially at early
times. A first-order least square fit is applied after 3.5D downstream from the orifice
exit from which the virtual origins can be determined which are −74.32D for the Re1

case and −76.37D for the Re2 case. Furthermore, from the slopes of these fitting lines,
the growth rates (cone angles) can also be estimated, which are 0.0176 and 0.0174,
respectively. These numbers are comparable with the results of the early researchers,
which are listed in table 3 of Glezer & Coles (1990). The agreement with the early
research results is one reason why this plot is used to determine the virtual origin.
Note the different approaches to determine the ring radius in this study as compared
with some of the early research where flow visualization was used. Core vorticity
centroids are not always located at the rotating centre of a passive scalar, especially
for turbulent cores where the vorticity contour is not always regularly circular; hence,
the growth rate here is slightly different from the flow visualization results. Individual
traces for Re2 are obviously more scattered. The reason is that a turbulent vortex ring
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Figure 5. Peak axial velocity vpeak on the ring centre trajectory as a function of downstream
distance. Velocity is scaled accordingly to similarity theory. Grey lines are the traces of each
of 50 realizations; + is the ensemble-averaged value from individual realizations; − is the
zero-order least square fit of + after y/D = 3.5, which represents the similarity theory. Here
yo is obtained from figure 4.

may have an azimuthal wave-like instability (similar to that analysed by Widnall &
Tsai 1977 for laminar rings). For the lower Re case, the rings navigate slower so the
waves may have bigger amplitudes at the same streamwise location. This situation
makes the core centroids look scattered more severely in the PIV plane. Because of
their turbulent nature, the shed vorticity from the core along the azimuthal direction
is highly unlikely to be uniform, the consequence of which is the uneven distribution
of local circulation along the azimuthal direction, causing the ring to tilt and disperse
from the mean trajectory. These are important properties of turbulent vortex rings,
hence one cannot apply an artificial treatment such that the cores appear exactly on
top of each other. This point is discussed in § 3.2.

The virtual origins just estimated are used to determine other similarity quantities
(so the same virtual origins are used for all quantities). Firstly, the peak velocity
in the field of interest (FOI) is plotted against streamwise distance in figure 5. The
peak velocity, which is in the axial direction, is located on the centre of the ring
trajectory. Both plots show that similarity theory weakly underestimates the decay
of the peak velocity. (In this paper, when quantities are plotted as a function of the
ring’s streamwise distance, if they are scaled according to similarity theory, they are
expected to be constant.) The disagreement is less clear in the Re1 case, where it
is only noticeable at the last few points, but it is reasonable to anticipate that the
deviation will grow farther downstream. It is worth emphasizing that this is the plot
which Glezer & Coles (1990) used to determine the virtual origin. If a free first-order
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least square fit is applied to v
−1/3
peak against y plot, it would indicate an unreasonably

large angle of growth when compared with the earlier results.
Interestingly, the similarity theory seems to predict the ring navigation speed or

celerity quite well. If (2.6) is differentiated, the equation for navigation speed can
be obtained. The strong noise at the beginning is due to the incomplete formation
process: the main ring has not pinched off yet.

If the ring navigation velocity is subtracted from the velocity field, the resultant
velocity field will be that of an observer moving at the same velocity as the ring.
Assuming that the ring is completely isolated, two stagnation points can be found
with one located at the windward tip and the other at the leeward tip. Because of the
existence of a wake only the windward stagnation point is easily recognized but that
is enough to determine the stagnation streamline which forms an open ellipse. With
the approximation that the bubble is an axisymmetric oblate spheroid, it is possible
to compute the volume of the bubble by numerical integration. In order to locate
the windward stagnation point more precisely, the original data point mesh is firstly
refined by a factor of 10 using two-dimensional cubic spline interpolation, after which
this refined mesh is also used to increase the accuracy of the numerical integration
scheme. The scaled ring volume as a function of streamwise distance is plotted in
figure 7. It can be observed that the two data sets obey the similarity theory quite well
after 3.5D. There is a subtle waviness in the two data sets, indicating an oscillation
of the ring bubble: the reason for this is left for future study. It may be related to
vorticity shedding from the core area or it may be related to the waviness on the core
changing the imaged cross-sectional area (and hence the inferred volume).

Fluid entrainment fractions for vortex rings can also be computed from the ring
bubble volumes. The entrainment fraction is defined in the same way as defined by
Dabiri & Gharib (2004) for the purpose of comparing the quantity to that of the
laminar rings.

κ(t) =
Ωbubble(t) − Ωejected(t)

Ωbubble(t)
= 1 − Ωejected(t)

Ωbubble(t)
, (3.1)

where κ is the entrainment fraction, Ωbubble is the ring bubble volume, Ωejected is the
total volume of the fluid ejected from the orifice during the formation process and
all the three quantities are functions of time. In contrast to the laminar rings of
comparable L/D value in Dabiri & Gharib (2004), which indicate an entrainment
fraction of about 0.3, figure 8 shows two major differences: firstly, the entrainment
fraction is negative, meaning that the ring bubble volume is smaller than the fluid
volume ejected from the piston nozzle, in which the formation wake should be
responsible to the missing part; secondly, the laminar ring shows a fairly constant
entrainment fraction as a function of time while entrainment fractions in figure 8
increase with time with slopes of 0.050 and 0.033 for Re1 and Re2, respectively. Note
that the bubble volumes of turbulent rings at two Reynolds numbers are similar
at same downstream distances as shown in figure 7 but Re =41 280 rings navigate
much faster than Re = 20 039 rings, the ratio of their celerities can be calculated from
figure 6.

As mentioned above, vorticity is continuously shed from the ring bubble volume
to the wake and it is in the wake where most cancellation and annihilation of
opposite-signed vorticity takes place. This mechanism causes the circulation of the
ring bubble area and the entire FOV to decrease. The plot of the circulation is
presented in figure 9, which has been scaled according to the similarity scaling law.
The theory underestimates the decay of the bubble circulation by a very small factor
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Figure 6. Ring navigation speed, celerity ut scaled according to similarity theory. The
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πr2(y) dy as a function of downstream distance

calculated from the ensemble-averaged velocity field, where ya is the windward stagnation point
and yb is the point at the maximum radius; r(y) is determined by the stagnation streamlines.
Symbols: �, Re1 case; �, Re2 case. The volume is scaled according to the similarity theory.
Note that − is the zero-order least-square fit after y/D = 3.5, which represents the similarity
theory. Here yo is obtained from figure 4.

up to the extent of the FOV. It is not very clear in the Re1 case, but downstream
there is a small deviation. While the circulation of the bubble decays roughly in
line with the similarity theory, the circulation of the entire field decays much more
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Figure 9. Circulation as a function of streamwise distance computed from ΓB ′ =
∫

B ′ ω dx dy,
based on the ensemble-averaged vorticity contours for both Re cases. Symbols: �, the whole
flow field, where B ′ represents left/right half of the entire flow fields; �, the ring bubble area,
where B ′ represents the rectangular region of 1.4D in the streamwise direction and 1.2D in the
radial direction aside on the ring’s mean trajectory; +, the wake part, simply is the difference
between � and �. The circulations of the ring bubble area are scaled by similarity law in which
the two − are the zero-order least-square fits after y/D = 3.5 with yo obtained from figure 4.

rapidly. This may be predominantly due to annihilation of vorticity in the wake.
Although vorticity leaving the PIV plane due to three-dimensional effects may also
be responsible, because there is a weak anisotropy in the wake part, this effect is
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which is simplified as a rectangular region of 1.4D in the streamwise direction and 2.4D in the
radial direction; +, the wake part, simply is the difference between � and �; −, the maximum
impulse level of the whole flow field.

not believed to be as important as the annihilation effect. Farther downstream, the
amount of vorticity obtained from shedding from the ring bubble is not enough
to compensate for that being continuously annihilated in the wake. The vorticity
shedding process only involves the lowest level around the ring cores, therefore the
effect is less significant.

The variation of the hydrodynamic impulse as a function of streamwise distance is
also presented in figure 10 in an attempt to show how the decay of the circulation
is related to the behaviour of the impulse. A small decay is observed in the bubble
impulse which agrees with Maxworthy (1974), as well as the full field impulse, although
it is much less severe than the decay of the full field circulation. The amount of decay
of the full-field impulse up to the last points in figure 10 is about 8 % and 16 % for
the Re1 and Re2 cases, respectively, and the decay of the bubble impulse is about
5 % and 10 % respectively (note the different end points for the two cases). On the
one hand, the increase of the ring radius (see figure 4) leads to an increase in impulse
(see (2.3)); on the other hand, the vortical structures shed from the bubble are less
intense, and hence result in only a small loss of the ring impulse. The slug model
underestimates both impulse and circulation (Didden 1979; Lim & Nickels 1995
and Shariff & Leonard 1992). It is noteworthy that the impulse responsible in the
similarity theory is the hydrodynamic impulse which is computed from (2.3). Saffman
(1992) derived the impulse required to set a region of fluid into an unsteady vortical
motion that includes an extra term, which is not always easy to measure empirically.
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Figure 11. Determination of the virtual time origins by intersecting the line to the time axis.
Grey lines are the traces of each of 50 realizations.

This impulse is written as

I=
1

2
ρ

∫
V

(r × ω) dV + ρ

∫
S

φn dS, (3.2)

where n is the unit normal vector directed into the region of compact vorticity, and φ

is the velocity potential at the surface S of the body. Notwithstanding the dominance
of the first term in many circumstances – hence it is often used by itself for force
estimation – the second term can be substantial sometimes (Krueger & Gharib 2003).

Finally, the virtual time origins of both cases can be determined by plotting the
ring locations against arrival times as is shown in figure 11. The two virtual time
origins are −2.61 s and −5.28 s for Re1 and Re2 cases, respectively.

3.2. The raw turbulence quantities

If the similarity theory is believed to work, at least over some distance for both
Reynolds number cases, the velocity components can be scaled according to (2.7). In
order to verify the validity of the scaling law, testing ranges are set from 4D to 6D

for the Re1 case and 5.5D to 7.5D for the Re2 case such that rings are located as
far downstream as possible while the whole ring structure can still be seen. Velocity
components at each station within the testing ranges are then scaled. Figure 12 shows
that the scaling law works well and curves of both Reynolds number collapse very
well, indicating that Reynolds number is not a strong factor influencing the mean
velocity. Mean velocity and vorticity contours are presented in figures 13–15. It is
worth noting that, even though figure 5 indicates that the similarity theory does not
work perfectly for the entire data range presented, for the range tested, the theory
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Figure 13. Radial velocity U contour in similarity coordinates. Contour level is −8.0(1.0)8.0.

works well. The time scale involved in (2.7) is set to be the averaged arrival time of
50 rings at the station being tested. The largest arrival time difference at a station is
typically below ±0.15 s, which is negligible when the value of to is considered.
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Figure 14. Axial velocity V contour in similarity coordinates. Contour level is −16.0(1.0)5.0.
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Figure 15. Vorticity ∂V/∂η − ∂U/∂ξ contour in similarity coordinates, obtained from
velocity contours. Contour levels are −600(50)50 and 50(50)600.

In order to better understand the turbulence structure, it is necessary to examine
the turbulence stresses and production. Because the mean structure appears to follow
similarity well, turbulence quantities here are scaled using the similarity transformation
(The relationships between the real quantities and the similarity quantities can be
deduced from (2.7), and they are not illustrated here.) and they are presented in
similarity coordinates from figures 16–18 and 21 for rings of both Reynolds numbers.
Peak turbulence quantities can be clearly identified and the positions are located
very close to the mean vortex cores. When comparing these structures with the LDV
results, perhaps the most distinguished difference is the degree of asymmetry, which is
partly due to the different experimental approaches. Note that the results presented by
Glezer & Coles (1990) are perfectly symmetrical since they measured only one side and
reflected for presentation in the contour plots. This small asymmetry also exposes the
most important contributor of the turbulence quantities, dispersion, reasons for which
have been discussed in § 3.1. The second obvious difference, perhaps, is the existence
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Figure 16. Radial normal Reynolds stresses −U ′U ′ contour in similarity coordinates.
Contour level is −12.0(1.0)1.0. Higher levels in the core centre area are not shown.
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Figure 17. Axial normal Reynolds stresses −V ′V ′ contour in similarity coordinates. Contour
level is −24.0(2.0)2.0. Higher levels in the core centre area are not shown.

of secondary cores beside main cores shown in LDV results of Glezer & Coles (1990),
which seems only be possible when rings are located exactly at the same location and
are of the same size and shape. This difference will be further discussed in § 3.3. Because
the core centroids have a random scatter in the centroid cluster plot (not shown here),
small details near the core centre (if they exist) will be smoothed away by the averaging
process. In order to examine how dispersion affects the stress level and distribution,
the core dispersion level is plotted in figure 20. Note that the effect of dispersion is to
add to the turbulence intensities since it adds an extra effective fluctuation. This plot
is able to explain several facts: firstly, the Re1 case has a more symmetrical dispersion;
therefore, stresses and production contours are more symmetrical for the Re1 case;
secondly, the left core dispersion is more severe in the Re2 plot, which directly causes
the intensities of the left core to exceed that of the right core in figure 17 for the Re2
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Figure 19. The summation of the magnitude of the three Reynolds stresses τ : −u′u′, −v′v′

and −u′v′ in the ring bubble area
∫

B
|τ | dB/U 2

pB as a function of rings’ streamwise locations.
B is the bubble region. In order to exclude the effect of the wake, the three overall stress levels
are only computed in the ring bubble area. For simplicity, the bubble area is chosen to be a
rectangular region of 1.4D in the streamwise direction and 2.4D in the radial direction, which
is big enough to include the bubble but small enough to exclude the wake. This integrand is
approximately equal to the integrand over the bubble area, since the stress level outside the
bubble area is insignificant and hence negligible. This rectangular region is adopted for both
cases and in all the similar calculations below. Referring to figure 7, the bubble volume of the
two Re cases only differs less than 10%. Symbols: +, axial normal Reynolds stress; ×, radial
normal Reynolds stress; �, Reynolds shear stress.
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Figure 20. The r.m.s. of the apparent core centroids dispersion with respect to the mean core

centroid streamwise location,
√

(1/N ) ΣN [(xc − xc)2 + (yc − yc)2], where N = 50, xc and yc are
the ensemble-averaged core location coordinates, xc and yc are the instantaneous core location
coordinates of single realization. This quantity is normalized by the rings’ streamwise location.
Therefore, a flat line indicates an increased dispersion level. Symbols: ×, left core; +, right
core.

case; thirdly, dispersion increases as the ring moves downstream, which may be the
reason why the turbulence intensity level does not decay (shown in figure 19), while
as predicted by the similarity theory, stress level at every point will decrease as t−3/2

or y−6; hence, the level of the stress integrated over the bubble area will decrease as
t−1 or y−4. Despite the differences, general agreement with the broad features noted
by Glezer & Coles (1990) is apparent, for instance, a wake can only be observed in
the radial component of the normal stresses, not in the axial component.

The turbulence production is thought to be mainly due to the large scales; hence, it
can be estimated (whereas the authors believe that the spatial resolution is not suffi-
cient to calculate the dissipation in these measurements – so this will not be attempted).
In two-dimensional Cartesian coordinates, turbulence production can be written as

p = −u′
iu

′
j eij = −

3∑
i=1

3∑
j=1

(
1

2
u′

iu
′
j

∂ui

∂xj

+
1

2
u′

iu
′
j

∂uj

∂xi

)
, (3.3)

where ui , uj are mean velocities and u′
i , u

′
j are velocity fluctuations, eij is the strain-rate

tensor for the mean velocities. The subscripts of the above equation can only go up to
2 because of the lack of information of the third component using two-dimensional
PIV recording. The two-dimensional production contour is presented in figure 21.

In an attempt to investigate components in the third direction, stereoscopic PIV
measurements were made to provide the planar information of out-of-plane velocity
component, such that the subscripts are able to be raised to three for some terms
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Figure 21. Turbulence production contour in similarity coordinates. Only the first four terms
in (3.4) are included. Contour levels are −350(100)−50 and 50(100)550. Higher levels in the
core centre area are not shown.

in (3.3). Thus among nine terms for the production, seven can be determined
(∂w/∂z = 0 − (∂u/∂x + ∂v/∂y) by continuity, leaving only ∂u/∂z and ∂v/∂z undeter-
mined). It should be noted that in the case that the ensemble average is considered
to be axisymmetric, these extra terms will make no contribution. The centre of the
measurement station for stereoscopic PIV recording is at 224 mm (4.48D) downstream
from the orifice exit, the FOV covers about 2.5D in the streamwise direction and the
spacial resolution is 2.15 mm. Stereoscopic measurements have only been made for the
Re1 = 41 280 case. Equation (2.7) is also used to scale the true velocity into similarity
velocities U and V for stereo results (In the third component, the relationship is similar
as U and η, named them W and ζ .) such that similarity scaled production P becomes

P =

(
−U ′U ′ ∂U

∂η

)
+

(
−U ′V ′ ∂U

∂ξ

)
+

(
−U ′V ′ ∂V

∂η

)
+

(
−V ′V ′ ∂V

∂ξ

)

+

(
−W ′W ′ ∂W

∂ζ

)
+

(
−U ′W ′ ∂W

∂η

)
+

(
−V ′W ′ ∂W

∂ξ

)
. (3.4)

Figures 22–24 show that most of the turbulence production is contained in the
x–y plane, the contribution from the out-of-plane components is generally weak
except for the one which comes from the normal stress. Reynolds stresses obtained
from stereoscopic recording are also presented in figures 25 and 26 as a comparison
with figures 16–18. For Reynolds normal stresses, −W ′W ′ component is comparable
with −U ′U ′ but is about half of the −V ′V ′. The non-negligibility of the out-of-
plane component occurs for two main reasons: firstly, the rings are strongly three-
dimensional and are possibly dispersed in a direction with a component perpendicular
to the PIV plane; secondly, possibly there exist significant azimuthal velocities along
the core region (Maxworthy 1977). The main contribution to the Reynolds shear
stress comes from components in the PIV measurement plane. To further prove the
existence and importance of the −W ′W ′ stress component, a different stereoscopic
set-up is adopted. In this arrangement, PIV plane is positioned in parallel with the
ring’s azimuthal direction and is located at 6D downstream from the orifice exit.
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Figure 22. Part of the turbulence production in similarity coordinates. Contour levels are
−350(100)−50 and 50(100)550. Higher levels in the core centre area are not shown. (b) is
calculated from all seven terms in (3.4), and (a) is produced using the first four terms aiming
to show the effect of the third components to the resultant contour. Note that the core centre
locations are conserved in similarity coordinates, despite the independent experimental set-up.
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Figure 23. Part of the turbulence production, normal components (a–c): −U ′U ′∂U/∂η,
−V ′V ′∂V /∂ξ , −W ′W ′∂W/∂ζ in similarity coordinates. Contour levels are −700(200)−100
and 100(200)700. Higher levels in the core centre area are not shown.

(Because of physical space restrictions, smaller streamwise locations are difficult to
measure.) The spatial resolution in this set-up is 1.69 mm and only Re1 = 41 280 rings
are studied. The three instantaneous velocity components are presented in figure 27
and in similarity coordinates. Although these are not Reynolds stresses, the strong
three-dimensional structure is clearly observed and the importance of −W ′W ′ is
expected. The Reynolds stresses and other statistical quantities obtained from this
experimental set-up are left for future studies.

3.3. Turbulence quantities with some artificial corrections

Since it is believed that dispersion makes a significant contribution to the total
turbulent stresses, it is logical to attempt to decompose the total Reynolds stresses
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Figure 25. Reynolds normal stresses: −U ′U ′, −V ′V ′, −W ′W ′ in similarity coordinates.
Contour levels are −12.0(1.0)0.0, −24.0(2.0)0.0 and −12.0(1.0)0.0 for three components,
respectively. Higher levels in the core centre area are not shown.
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Figure 26. Reynolds shear stresses: −U ′V ′, −U ′W ′, −V ′W ′ in similarity coordinates.
Contour level is −4.5(0.5)4.5. Higher levels in the core centre area are not shown.
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Figure 27. Instantaneous velocity contours in azimuthal plane presented in similarity
coordinates when the PIV plane approximately cuts through the ring core. (a–c) U , V ,
W ; the symbol assignment is consistent with the two-dimensional results. Contour levels are
−8.0(2.0)8.0, −16.0(2.0)4.0, −8.0(2.0)8.0, 0 level bypassed. The PIV plane of two-dimensional
or first stereoscopic set-up is along η direction. Note that U , V , W are in Cartesian coordinates.

τ into several possible contributions. This section attempts only to quantify the
contribution of dispersion to the turbulence quantities. The authors do not claim
that the ‘corrected’ quantities are accurate, because that would require fully three-
dimensional data over a volume:

τtotal = τ
(1)
position + τ

(2)
radius+tilt + τ

(3)
intensity + τ

(4)
shape, (3.5)

where τtotal represents the true stresses which are shown in figures 16–18, position,
radius, tilt and shape are all apparent properties reflected by the core positions which
might be due to azimuthal waves. The same equation can also be applied to the
turbulence production. The τtotal contours are directly obtained from the experiments,
including all the factors on the right-hand side of (3.5) and without any artificial
correction. It now becomes possible to estimate the percentage contribution to the
stresses due to these factors. In this section, mathematical processes are designed in
an attempt to separate the contributions from these factors.

The easiest factor to filter out in (3.5) is (1), due to dispersion of position. In other
words, the first method is designed in order to shrink the core centroids’ footprints
cluster at each station to one point or to bring down the curves in figure 20 to close
enough to zero. At each station described in § 3.1, the left and right halves of a
single ring are considered to be uncorrelated, and each half is shifted until the core
centroid of the corresponding half collapses with a destination point. The destination
points are chosen to be the intersections of each station line in a streamwise position
and the fitting lines in figure 4. Although the core centroids of 50 realizations now
collapse by applying the shifting, this process does not filter out factor (2). This is
because shifting in rectangular grids does not change the ring’s tilting angle in the
PIV plane and it does not correct the curvature differences around the core due to
the ring size difference. The result of applying this process is an overestimation of
the stresses towards the centre of the ring (the centre axis). In an effort to reduce
this overestimation, 20 realizations whose core centroids are closest to the destination
points are used in the averaging. Figure 28 shows that this method filters out up to
30 % of the total stresses, especially for Re2 case when the apparent dispersion is
strong. This illustrates the effectiveness of the ‘filtering’ and clearly shows the size of
the possible contribution of core position dispersion to the total stresses.
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Figure 28. The summation of the magnitude of the three Reynolds stresses −u′u′, −v′v′ and
−u′v′ in the ring bubble area

∫
B

|τ | dB/U 2
pB as a function of rings’ streamwise locations after

shifting each core centroid to the desired collapse point. B is the rectangular region of 1.4D in
the streamwise direction and 2.4D in the radial direction. Symbols: +, axial Reynolds normal
stress; ×, radial normal Reynolds stress; �, Reynolds shear stress.

For the purpose of subtracting factor (2) from (3.5), a technique is borrowed from
the analysis of Glezer & Coles (1990) that was applied to their LDV data. Each
column in the resultant data mesh (the vector field) is assumed to be uncorrelated
with the neighbouring columns. The velocity mesh grid is 85 × 85; thus, effectively
there are 85 LDV testing stations across the radial direction. A single realization
from the PIV is equivalent to 85 LDV velocity traces. In this way, data at each
column has no idea about what happens in the neighbouring columns. The algorithm
is summarized in the following steps.

(a) If one column is considered, for each of the 50 rings produced, the PIV image
number (at a particular time) corresponding to the minimum root mean square (r.m.s.)
of velocity components with respect to the ensemble-averaged velocity components
at that column is picked out. The first ensemble-averaged velocity components are
calculated from the raw averaging process which is described in § 3.1. These ensemble-
averaged values will be updated after the second step. This process is equivalent to
the shifting process of Glezer & Coles (1990). However, instead of shifting the axial
velocity component to find the minimum r.m.s. only, in this method, both axial and
radial components are taken into consideration. In order to take into account small
dispersion in the PIV plane, the neighbouring three columns (hence seven columns in
total) are included for searching the minimum r.m.s. PIV image number (time point).

(b) After the first step, there are 50 velocity traces (including both axial and radial
components) from 50 rings corresponding to one column station (the effective LDV
station), after which these 50 r.m.s. values are further sorted to find the smallest
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Figure 29. The summation of the magnitude of the three non-dimensionalized Reynolds
stresses −u′u′, −v′v′ and −u′v′ in the ring bubble area

∫
B

|τ | dB/U 2
pB as a function of rings’

streamwise locations after adopting the single-column shifting method. B is the rectangular
region of 1.4D in the streamwise direction and 2.4D in the radial direction. Symbols: +, axial
Reynolds normal stress; ×, radial normal Reynolds stress; �, Reynolds shear stress.

30 r.m.s. value. The final 30 traces at one column station are used to find the new
ensemble-averaged velocity and the Reynolds stresses.

(c) The processes described above are iterated to obtain the final result for one
column. The same process is applied to all the 85 columns to obtain the corrected
two-dimensional stress field.

This process actually biases the velocity to a smaller value because in the first
iteration it corrects the velocity components towards the raw ensemble-averaged
value which has the dispersion effect included, hence has lower intensity compared
with the instantaneous value of some realizations at the same relative locations, but
it does not necessarily decrease the stress level. Note that, in each column, the two
velocity components are correlated and they are not corrected by the circulation
factor. The result is plotted in figure 29. Note that the level in figure 29 is only 20 %
of that in figures 19 and 28. The stresses are also plotted in similarity scaling as
shown in figure 30. It shows that stresses do not decay perfectly as the similarity
theory predicts (plots are still flat in figure 29), which means that either the testing
range is not long enough or factor (4) still plays a significant role which has not been
subtracted. To subtract factor (4), it requires that on top of the algorithm described
above, at each column the velocity traces need to be scaled to have the same standard
deviation for both velocity components individually but this process would decouple
the two velocity components hence has a trade off. It is for this reason that this factor
is untouched. Note that the procedure used by Glezer & Coles (1990) treated the u

and v signatures differently and separately – something they regretted at a later stage
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Figure 30. The magnitude of the non-dimensionalized Reynolds stresses in the bubble area
scaled by similarity scaling law as a function of rings’ streamwise locations after the second
correction method is applied. Radial component

∫
B

| − u′u′|dB (ρ/I )2 (y − yo)
4 /ξ 4; axial com-

ponent
∫

B
| − v′v′|dB (ρ/I )2 (y − yo)

4 /ξ 4; shear component
∫

B
| − u′v′|dB (ρ/I )2 (y − yo)

4 /ξ 4.
Symbols: �, Re1 case; �, Re2 case; −, the zero order least square fits of Re1 and Re2 cases
with the fixed virtual origins obtained in figure 4.

(as stated in their paper). The procedure above is then a significant improvement for
this reason (and in other details).

Finally, the turbulence production level in the bubble region is plotted for the
raw quantity together with the filtered quantities using the two correction methods
above (see figure 31). There are a few points worth noting once more even though
they are similar to those mentioned for the stress plots. Firstly, the raw levels
are quite different even in dimensionless form. Like the similarity theory, the non-
dimensionalizing process only accounts for the intensity but not for the dispersion;
therefore, higher level in the Re2 plot is reasonable (see figure 20). Secondly, after the
first correction method is applied, the production levels for the two cases decrease
to the level of 0.025, meaning that after the dispersion is excluded the evidence for
Reynolds number independence is clear. Thirdly, as with the stress plots in figure 29,
application of the second correction method reduces the level by about another 50 %
and the plots are much smoother. However, if the last plots are presented in similarity
scaling (see figure 32), it is noticeable that the similarity theory does not work perfectly
as well, probably for the same reasons as that of the stresses.

The contours of the Reynolds stresses and the production are reproduced either
after the second correction method has been applied or after factors (1) and (2)
have been filtered from (3.5) (see figures 33 to 36). Although they do not precisely
obey the similarity theory, they are still presented in similarity coordinates. The stress
intensities in the radial and axial components are comparable now and the degree
of the symmetry is increased. Because of the low-intensity range, a very weak wake
appears in figure 34(a) but not in figure 34(b) nor in figure 17(a). The wake here is
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Figure 31. The magnitude of the non-dimensionalized turbulence production in the bubble
area

∫
B

|p| dB/ρU 2
pΓslug as a function of rings’ streamwise locations. The production p is

calculated from (3.3) for i, j up to 2. Symbols: +, the raw quantity ptotol; ×, after pposition is
filtered; �, after pposition + pradius+t ilt is filtered.
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Figure 32. The magnitude of the non-dimensionalized turbulence production in the bubble
area

∫
B

|p| dB scaled by similarity scaling law
∫

B
|p| dB (ρ/I )3 (y − yo)

8 /ξ 8 as a function of
rings’ streamwise locations after the second correction method is applied. The production
p is calculated from (3.3) for i, j up to 2. Symbols: �, Re1 case; �, Re2 case; −, the
first-order least-square fits of Re1 and Re2 cases with the fixed virtual origins obtained in
figure 4.
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Figure 33. Radial normal Reynolds stresses −U ′U ′ contour in similarity coordinates after
the second correction method. Contour level is −3.6.(0.3)0.3.
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Figure 34. Axial normal Reynolds stresses −V ′V ′ contour in similarity coordinates after the
second correction method. Contour level is −4.5(0.5)0.5.

not the one shed from the ring structure, but the one that belongs to the formation
process. This formation wake is also visible in figure 35(a), but it is merged with the
wake shed from ring bubble. Note that with correction, the values for the quantities
are very similar to those found by Glezer & Coles (1990), whereas before correction
they were significantly higher. Of course, the results of Glezer & Coles (1990) were
also corrected for dispersion but via a more complex procedure (which was necessary
due to the fact they only had single point measurements).

4. Conclusions
Overall for the streamwise range considered, similarity theory seems to predict the

behaviour of the circulation decay, velocity decay and growth rate quite well. In the
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Figure 35. Reynolds shear stresses −U ′V ′ contour in similarity coordinates after the second
correction method. Contour level is −0.5(0.5)0.5.
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Figure 36. Turbulence production contour in similarity coordinates after the second
correction method. Contour levels are −80(20)−20 and 20(20)80.

case of the turbulence quantities, the situation is more difficult to assess because
ring dispersion has a much stronger effect on the results. After applying basic and
reasonable corrections, though, it does seem that the similarity theory may apply.

The vital differences observed in these two cases, perhaps, is the degree of apparent
scattering of core centroids which can be seen in figures 4 and 19. As has been
emphasized, the apparent scattering is part of the nature of turbulent rings due to
azimuthal waves and because the waves travel in the azimuthal direction, the PIV
plane can cut at local peak or valley of the waves and not necessarily in a totally
random fashion. In other words, there could be a trend that at a certain streamwise
location, waves rotate at azimuthal angles such that on one side, cores appear more
scattered than on the other. (Of course, the imperfection of the ring generator could
be another possibility, although it is believed to be a minor factor.) This could also
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Figure Quantity on vertical axis Similarity quantity (Re1) (Re2) LDV

6
[
4ut (ρ/I ) (y − yo)

3
]1/4

ξ 25.587 26.500 25.0

6 Ut 6.40 6.63 6.25

4 η 0.225 0.232

5∗ vpeak (ρ/I ) (y − yo)
3 /ξ 3 Vpeak 15.464 15.177

9∗ [∫
B ′ ω dxdy

]
(ρ/I ) (y − yo)

2 /ξ 2
∫

S′ ω̂ dξdη 6.869 7.096 7.71

7
[∫ yb

ya
πx2 dy

]
ξ 3/ (y − yo)

3
∫ ξb

ξa
πη2 dξ 0.076 0.078 0.048

30∗ ∫
B

| − u′u′|dB (ρ/I )2 (y − yo)
4 /ξ 4

∫
S

|U ′U ′|dξdη 0.205 0.275

30∗ ∫
B

| − v′v′|dB (ρ/I )2 (y − yo)
4 /ξ 4

∫
S

|V ′V ′|dξdη 0.185 0.244

30∗ ∫
B

| − u′v′|dB (ρ/I )2 (y − yo)
4 /ξ 4

∫
S

|U ′V ′|dξdη 0.016 0.051

32∗ ∫
B

|p| dB (ρ/I )3 (y − yo)
8 /ξ 8

∫
S

|P |dξdη 5.50 7.05

Table 1. Similarity constants obtained from the plots. LDV represents the results from
Glezer & Coles (1990). Here Ut is the similarity quantity corresponding to the ring navigation
velocity, Ut = ut (ρ/I )1/4 (t − to)

3/4 = (1/4)ξ . The asterisk (∗) denotes that the plots do not obey
the similarity theory perfectly but the least-square fitting is still applied to find the similarity
quantities. Note that ω̂ is the dimensionless vorticity; B is the bubble region in real coordinates;
B ′ represents half of the bubble region for circulation calculation in real coordinates; S is the
bubble region in similarity coordinates; S ′ represents half of the bubble region for circulation
calculation in similarity coordinates. P is the dimensionless turbulence production calculated
from the first four terms in (3.4). Note that in the circulation item, LDV results are computed
for the full flow field; however, figure 9 shows that the full field circulation deviates from the
similarity theory significantly. The circulations shown here hence are the bubble circulations.

be a reason why in the Re2 case in figure 20, the two curves split at about y/D = 5.5
and soon after y/D = 7 they merge again. (Note that 50 realizations should guarantee
convergence; see figure 3.) The amplitude of the waves directly relates to the degree
of instability which is a function of rings’ propagation time and distance. The detailed
investigation of this scattering trend is left for future study.

When quantities are plotted to verify the similarity theory, they are scaled with the
virtual origins fixed and the zero order least square fits are applied. If the similarity
theory works, the plots should follow the fitting lines. The fitting of the plots is very
sensitive to the locations of the origins, which are obtained from figure 4. The Re2

case in figure 4 is more scattered, it makes sense to imagine that if the outer part of
the individual traces is used to fit (By using the outer part, the authors are suggesting
that the inner parts do not reveal the true ring radius, they are rather influenced either
by the azimuthal waves or by the dispersion.), a nearer origin may be obtained which
changes the plots slightly and leads to better fits in some figures, like in figure 5.

The results presented have shown that all the ensemble-averaged quantities
measured in this experiment are not strong functions of Reynolds number when
the rings are produced as turbulent and at least up to Re = 41 280, although
the turbulence quantities, after correction, still indicate slightly different similarity
quantities. Therefore, the elimination of ν in (2.2) is a reasonable assumption.
Although the hydrodynamic impulse of the entire flow field, after some computational
error is excluded as described in § 3.1, drops, the drop is not significant at least for the
first few orifice diameters (see figure 10); furthermore, since the similarity theory works
for the ring bubble area, it makes sense to consider the ring bubble impulse instead
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of the full field impulse, and this quantity is fairly constant. The vortical structure
shedding as observed by Maxworthy (1974) does not involve significant impulse
shedding. When all the assumptions work, similarity theory predicts the development
of single-point properties only, e.g. τ and p. When the ensemble-averaging process is
applied to obtain these quantities, to properly verify the theory requires that all the
realizations are ideal in the sense that they are of the same location, size, tilting angle
and shape. This is not possible because of the effect of (apparent) core dispersion,
which is inherent in the nature of turbulent vortex rings and it is the (apparent)
core dispersion that has a significant effect on the results. The contribution from
the intensity fluctuation is believed to be below 10 % of the raw or total level and
because the shapes of the turbulent vortex rings are difficult to adjust to be the same,
perfect similarity decay is not seen. Despite the imperfection in the similarity decay,
they are least square fitted to give the values and from which similarity quantities are
presented in table 1.
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